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K™.Order Extended Linearization

Jianliang Wang‘and Wilson J. Rugh

Department of Electrical & Computer Engineering
The Johns Hopkins University
Baltimore, Maryland 21218
(301)338-7004

Abstract: For a given nonlinear system, we consider the
design of a nonlinear control law such that the following
properties hold. First, as in the extended linearization
method, linearizations of the closed-loop system about
constant operating points of the closed-loop system
achieve specified, linear design objectives. Second, the
Taylor series expansion of the closed-loop state eguation
about any constant operating point is such that terms of
order 2, 3,..., k are zero, or at least a-¢ minimized in a
certain sense. Conditions under w:ich this can be
achieved, while simple t0 state, are res:-ictive.

1. Introduction

We consider generalizing the ex::nded-linearization
design approach for nonlinear syste'ns that has been
developed in recent years. [1- 3] Tt - approach can be
described briefly as follows. The noc .near system to be
controlled is represented by its famyv of linearizations
about a family of constant operating »oints (equilibrium
points). Then a family of linear control laws, parameter-
ized by the constant operating point, .s computed so that
the design objectives are satisfied by the closed-loop
linearization family at each operating point. Finally, a
nonlinear control law is computed for the original non-
linear system so that the resulting closed-loop system has

-the designed closed-loop linearization at each operating

point. Relying on the accuracy of the linearized model,
this nonlinear closed-loop system should satisfy the
design objectives in a neighborhood of the family of con-
stant operating points. Indeed, for stable closed-loop sys-
tems with slowly-varying inputs, this intuition is sup-
ported by the results in [4].

Our generalization of this approach, called k#-order
extended linearization, involves requiring that the Tavlor
series expansion of the closed-loop state equation about
any constant operating point in the family satisfies an

additional property; namely, that terms of order
2. 3,..., k are zero, or at least are minimized in a certain
sense.
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There are at least two motivations for pursuing such
a generalization. The first is that the selection of non-
linear control laws corresponding to a parameterized
linear control law in an extended-linearization design is
highly nonunique, and a natural method of restricting the
choice would be vaiuable. Second, a closed-loop system
with, say, second-order terms zero is more accurately
described by its linearization (first-order terms) in a
sufficiently-small neighborhood of the constant operating
point family.

In Section 2, necessary and sufficient conditions on a
parameterized linear control law are given for the
existence of such a nonlinear control law, and a construc-
tion is given for the affirmative case. Related results for
nonlinear observers are discussed in Section 3. Both sec-
tions refer to the Appendix where existence results and
solution constructions for a special type of partial
differential equations are given.

The following differentiation notation will be used.
If f(x):R" — RP, then df/a denotes the pxn Jacobian
matrix whose (i,/)-entry is the partial derivative 8f/ax,.
For n = 1, 8 will be replaced by 4, and an overdot often
will be used if the independent variable is time r. If
fxy)R™R" — RP, then df/ax denotes the pxm matrix
‘with (i,f)-entry 8f;/&,, and 3f/dy is the pxn matrix with
(i,7)-entry 3fi/8;. Evaluation of a derivative is indicated
in the customary fashion, for example, (8f/8)(x¥).

To avoid counting the order of continuous
differentiability, all functions will be assumed sufficiently
smooth that indicated partial derivatives are continuous.

2. State Feedback
We consider a nonlinear system of the form

x =f(x, u), x€R", ueR™, (2.1)
y =h@x), YERP (2.2

where f:R"xR™—R", h:R"—RP, 1<m<p<n < co with
£(0,0) = 0, A (0) = 0. Suppose that this system has a con-
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stant operating point family
{ (u(a), x(a), y(a)], a € I‘} (2.3)

where T is an open set in RY, 1<q<m, 0€l, and
w:—~R™ x:[—R", y T—RP with u(0) =0, x(0)=0,
¥(0) = 0. That is, fora €T, .
0 = £ (x(a), u(a))

¥(e) = A(x(a))
We will consider nonlinear feedback control laws of the
form

u =kx, w) (24)

where k: R*xR™—R™ with (0, 0) = 0, and we R™ is the
new input with constant operating point family w(a), a €T,
w(0) = 0, such that u(e) = £ (x(a), w(a)). Fora€eT, let

s, u(@) = F@, ZLxte), u(e) = G (@)
2 (x(a)) = H(e)

% (x(o), w@) = K(@), Z(x(a), wi@)) = M(@) (2.5

We assume that, for ael, M(a) is nonsingular,
rank G(a) = m, and
ax ox
e
rank | 5 |=rank| 5 |=gq (2.6)
& ()
R b
For simplicity and concreteness, we first consider
second-order extended linearization. The parameterized
linear gains K(a) and M(a) in (2.5) are specified by the
design objectives for the closed-loop linearization, and
conditions for the existence of a corresponding nonlinear
control law (2.4) are givena in [6]. However, we want to
impose further conditions on the nonlinear control law in
relation to second-order terms in the Taylor series expan-
sion of the closed-loop system state equation (2.1), (2.4)
about (x(a), w(a)], e I'. Using the partitioning notation

K@ = [Ki(@ - Kn(a)]

Kli(a)
K(a) = , i=1...,n (2.7)
Ko (a)

and letting, for example

K‘r'q - aZk ,
(@) = 3o-(x(a), w(a)

Pk
Ow;ow;

K""(a) = a:jg:' (x(a) \W(a)) (2.8)

K™ (a) = (x(a), w(a))

second-order terms can be computed as follows. (For
convenuence we make use of the notation u = k(xw),

u(a) = k(x(a),w(a)).)
832!X.k!x.W!! - af!x'u!

. x(a) (a
&, LHIE Y
af(x.u) : of(x.u)
* e | 1O T | sk
m 3 x.u) . T
- g2 ) Ku(@K) (@) + G(K™ (@)
Upon setting
Ffrkgw) =0, aerT 2.9)
&, &; I b S B

there may .or may not be a solution for K*(a), but the
following is either a solution, or is such that the

* Euclidean norm of the left-hand side of (2.9) is minim-

ized at each a€T. (The superscript T denotes transpose.)

' . Sftx.u}
K@) = tT@o o7 452 |
3f(x.u) - Af(x.u) '
*aay | SOt G | @@
= Of(x.u) ‘K' - ] . -
+ aXKi@K@)|, Lj=1...,n (210
I§=:l EYEY :(@; i () K (o)

Adopting a partitioning notation for M () similar to (2.7),
and setting

& x.k(x,w) l Ja) =0, ael (211)
&, w; Xa)
Fffek@Ew)) | g, ger (212)
w12 =0
gives
Ffx.u)
K*"(a) = -[GT(2)G ()] “Gr(a)[-——— warMj(a)
Budr, u{a} s
m azf!x.u‘ y g =1 ..., n (2-1-\
+1§ Sudu :{‘:;K'(Q)MIJ(G) o=l me 3)
K™ (@) = -[GT(a)G ()] "G T(a)
g L flxu) | M@M)L = Lm (209

i=l a"au u(a)

Equations (2.10), (2.13) and (2.14) specify K™(a),
K*"(a) and K" (a) to cancel, or minimize, second-order
terms in the Taylor series expansion of the closed-loop
nonlinear state equation (2.1), (2.4) about [x(a), w(a)].
Now the question is whether there exists a k(x, w) with
such second-order partial derivatives, That is, we need to
consider the existence of a k(x, w) that satisfies the set of
partial differential equations for a €I

k(x(a), w(a)) = u(a) (2.15)
%‘(x(a). w(a)) = K(a) (2.16)




™~ ————— L R o 3 i
Bubdiaddbi bl Al A bt S 4 R AN R aT) avh gV gV 4V gNht ot oT) aih ach ais aty oih LR o e S8tk

t 1

2 (x(a). wia) = M(@) (2.17)
s @) = K@, Gjehn @9
af:k - (x(a), w(a)) = K*"(a), ; iy 11 ,’,’, (2.19)
o aw (x(a), w(a)) = K™, 4j=12....m (220)
with

u(0) = 0, x(0) =0, w(0) =0

By Lemma A1 in the Appendix, and Corollary 3.1 in {61,
we can state the following result.

Proposition 2.1: There exists a solution k(x, w) for the
set of partial differential equations (2.15)-(2.20) if and
only if, fora€r,

2 (0) = K@ (e) + M(2) 2 (@) @.21)
K@) = K¥(a), ij=1...,n (2.22)
K*™() = K™™(a), ij=1. (2.23)

K"(a) = K*™(a), j fxle (2.24)
aK X, W
Tia) = vK‘*'<a)—<a) + m '<a)——<a>
oo J=1 j

i=1...,n (2.25)
2 ) = zx‘"‘(co—-(a) + vK“‘"'(oo——(a)
% i=1 i=t

i=1....m (2.26)

where x,(a) and w;(a) are the j* entries of x(a) and w(a),
respectively. Funhermore if these conditions are
satisfied, one solution is given by

k(xw) = u(z (),
+ K@ @) - X271 @)] + M (27 (@))w - w(z ()

%}":ﬁ: (22 - %z EN - X (27 (@)
“imiy =l

b P R K@ - %@ N - %@ EN)
i =]

=1
+ 15 ERP e - w Iy e IR
where 2(a), 21— RY is an invertible function which is
formed by selecting the components of x(a) and w(a)
corresponding to the g linearly independent rows in (2.6),

and zeR? consists of corresponding components bf x and
w.

Note that (2.21) is the condition that X (a) and M (a)

vield a feedback linearization family, [6], and (2.22),
(2.23), (2.24) are satisfied by the smoothness assumption
on k(x, w). So the only conditions related to the cancella-
tion, or minimization of second-order terms are (2.25)
and (2.26). To consider these further, substitute (2.10),
(2.13) and (2.14) into (2.25) and (2.26). After some
manipulations, (2.25) and (2.26) can be simplified to,
respectively,

GT(Q)E%:[F(Q)*G(O‘)K(Q)] =0, s=1....q (228)

GT(a)Ei—[G(a)M(a)] =0, s=1....q (2.29)
If there exists a k(x, w) such that second-order terms in
the Taylor series expansion of the closed-loop state equa-
tion about [x(a), w(a)] are zero, then (2.9), (2.11) and
(2 12) hold. Therefore

-B_a,—[F(a) + G(a)K(a)] = z[—f(z k(x W))]x(a)

w(a)
9. If(xk(x,w))
g, 2o
iml ax :((n)) aa‘
. [__ af(x.k(x.wn}m 2% o)
£o1] O & w(a)

=0, 5= 1......q
and similarly,

a—i—[c(a)M(a)] =0, s=1....q

Corollary 2.2: Suppose that there exist solutions K™ (a),
K*'(a) and K*™(a) to the linear algebraic equations
(2.9), (2.11) and (2.12), respectively. Then there exists a
k(x, w) such that second-order terms vanish in the Taylor
series expansion of the closed-loop state equation (2.1),
(2.4) about [x(a), w(e)] if and only if, for«€&T,

2 (0) = K(@) T2 e) + M@ () (230)
F(a) + G(a)K(a) = constant matrix (2.31)
G (a)M (o) = constant matrix (2.32)

It is straightforward to derive conditions, similar to
(2.21) through (2.26), for canceling, or minimizing all
expansion terms of order 2 through k (k >2) by using
Lemma A.2. Of course, the conditions become more res-
trictive as k increases. Solving algebraic equations similar
to those in (2.9), (2.11) and (2.12), and substituting into
the conditions for canceling or minimizing all expansion
terms of order 2 through &, yields the following observa-
tion.

Remark 2.3: Suppose there exists a k(x, w) such that all
terms of order 2 through k (k 22) in the Taylor series
expansion of the closed-loop state equation (2.1), (2.4)
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about [x(a), w(a)] are zero. Then there exists another
k(x. w) such that, in addition, the k +1*-order terms are
zero, or at least are minimized. Whether the & +1%-order
terms are zero or minimized solely depends on whether
there exist solutions to linear algebraic equations analo-
gous to those in (2.9), (2.11) and (2.12). '

3. State Observation

Using the idea of extended linearization, various
forms of nonlinear observers have been proposed for the
ponlinear system (2.1), (2.2). {1,7] These nonlinear
observers are obtained through different methods of con-
structing nonlinear systems corresponding to the
" parameterized linear system

L3 -3@) = (F(@) + N @HE@IE -x(=)]

+ G@u - u(@)] - N(a)ly - ¥(@)], TR

§-5=HEE-x, Jer? (G.1)

where (o) = x(@), §(a) = y(a), and N:T—R™? is chosen
such that F(a) + N(a)H(a) has desired eigenvalues.
Clearly (3.1) is precisely the form of a parameterized
linear observer for the linearization family of the noo-
lirear system (2.1), (2.2). It is pot hard to show that a
nonlinear system corresponding to (3.1) always exists. (7]

We consider the problem of constructing a non-
linear system from (3.1), that is, a nonlinear observer for
(2.1), in the general form

-3 a(x,y, u)
7= h(x) (32)

with the property that second-order terms vanish, or at
least are minimized, in the Taylor series expansion of the
error equation

%(x -2) = fx, u)-a(E Ax), u) (3.3)

about £ = &(a) = x(a), x = x(@), 4 = u(a), a€T. Assuming
that H(a) is of full rank p, a straightforward computation

. shows that setting second-order terms to zero in the Tay-
lor expansion of (3.3) about (x(a), X(a), u(a)] gives

AF(a)=0, ij=1...,n (3.4)
AV(@) =0, i=L...,n,j=1...,p (3.5
AMG) =0, i=1...,n, j=xL....m (3.6)

aviie) = e, s = hmG)

£ 4 @) Hula) - g (@), @) = 0

AL
k=1,...,n i=1...,p (3.8)

T8

,;;aa

- )
5 A"'(0) Ha(o) Hy(@) - 5obr(x(a), u(e)

ijwt

Fh

. N(a) Eor

where Hj(a) is the (i,/)-entry of A (e) and, similar to the

notation X*"'(a) in last section, 4 ~*(a) "s are second-order

partial  derivatives of a(x,y, u) evaluated at

[X(@), ¥(a), u(a)]. Applying Lemma A.1, necessary and

sufficient conditions for the existence of a a(x, y, u) such
that (3.4), (3.5), (3.6), (3.7) are satisfied are

(x(a)) =0, kI=1....n (3.9

(3.10)
(3.11)

A =A@, =P
F (@) +N (a)H (o) = a constant matrix
aN; ¥ o

@) =14 (@) - A (@) 1H (@) Z2(@)

- (A a) - Ay-“-w%.“;@. i=1...p (312)

where Ni(a) is the i® column of N(a). Obviously, these
conditions are restrictive. In addition, the algebraic equa-
tions (3.8) and (3.9) must be satisfied. This situation
indicates that second-order extended linearization is
more restrictive in the observer case than in the state
feedback case. Of course, the usual approach is to use
the plant dynamics f (xu} in forming a (x.y,u), as in [1,7]},
and this further restricis the possibility for second-order
extended linearization.

4. Conclusion

In the state feedback case, a nonlinear coatrol law
that yields zero second-order terms in the c.osed-loop
state equation, for example, must be such that the
closed-loop linearization family is independent of the
closed-loop operating point. This is a stringent require-
ment, and it indicates that a different approach is needed
to further specify desirable properties of nonlinear con-
trol laws arising from the extended-linearization design
method. For observer design. the requirements are even
more restrictive. When second-order terms can only be
minimized, then the conditions are not so simpie to state,
but are restrictive none the less.

5. Appendix

Suppose we are given a set of functions g%(a); gl (o),
i=l,...,mgi@), L,j=1L.... n, from the open set
0eTcR? to R such that g?(0) = 0. Suppose also that
x[—R" is given with x(0) = 0 and rank 3x/dafa) = g, for
«el. We consider the following partial differential equa-
tion for v (x), viR"—R,

v(x(a)) = §°(a) (A1)
%(x(a)) sgl@) i=L....n (A2)
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(X(a)) =g‘,(°) Lj=1.. n (A.3)
Lemng
gia) = [gl(e) gi(@) - ga(®)] (A4)
@) = [g(a) ghla) + gnl@)], i=1..., n (AS)

for notational convenience, we have the following result.

Lemma A.1: There exists av(x) satisfving (A.1) - (A.3) if
and only if, fora €T,

glzj(a) sgj:l(a)r Lj=1..., n (A.6)
_BLO(O) = gl(a)-g—:(a) (A7)
ﬁ(C’) =8 (a)—(a) i=1...,n (A.8)

Proof: (Necessity) The conditions (A.7) and (A.8) follow
directly from calculating 8g°/3(a) and dg!/8c(c) using
(A.1), (A.2), (A.3), and the chain rule, and (A.6) follows
from the smoothness assumption on v (x).
(Sufficiency) Since rank x/de(a) =g we can form an
invertible function 2(a), 2:RY — R? by choosing the com-
ponents of x(a) corresponding to the ¢ linearly indepen-
dent rows in dx/da(a). Let z be the vector consisting of
corresponding components of x. We claim that
v(x) =gz () + '@ NNl - xz @M
23 £ 8GO, %G, % @GN (A9)
TR
is a solution. Obwviously (A.1) is satisfied, and (A.2) can
be shown by using (A.7). To show that (A.3) is true, let
O () denote terms of the same order as ¢ as ¢—0, and
compute as follows. ‘

2w - ~9%(—)(z e »—(.

. TP 8
’,:,az iz )( = )) (~)[x., x, (27 ()]
+“}_:ls.1,(z"(~))[jk—- e )<z ORI

1 na ag‘l‘s a1

—_—% T N E—

e e RO~ ~)

(i, - %, (2N, - X, (z"(z))]

L& S e
-y Hgl.l‘i 2. 2 -
25:-:h,-l &1 1(

)(l 1z ))——(2)]

I, - %, (2 @) '
+ 3T £, @@, - x, @ 1@)]

yeliyel

&;

Sy 1 __ >
=5 ( ) e Z )
l 32/'1
9 49 1 . )
I’z-:“,f.:l Bl,llaz -1 ( (")) ( ) &} (Z)

—"-"r(—)(z 1z )) <.)
. %k - oz _a_z‘_‘_ 3 .___ax' a2
+3 72 (z(z)) a @) & e (z)) (z)]

=102

" agt.
+
-1az 1z)*

az,~| 1 ___.
= -——azx()( @) ()1

{27 ))——(Z)

,

-1 —_ 4
+“>;lg..(z (z))[,.?u?,azl,‘(-)az ey )( )

& ol

()

-1
& 'ax'_ @) - (z (Z)) (-)l

l()

-1
po ()( (Z)) (2)]

+ T R <-))t—7-

iy=ligel

&, o
ar 32 ( )
+ O (x-x(z(2)))

Evaluating at x = x(c) and using (A.7), (A.8) will give
(A.3) to complete the proof. O

(z 1(~))——(Z)]

In fact, Lemma A.1 can be generalized easily to the
case where all partial derivatives of v (x), through order &,
are specified. That is

v(x(a)) = 8°(a)

%(x(a)) =g, i=l....n
ax & (X(a)) gl:ll,(a) ’ L1,y = ..., n
gtr,ék_v,—&f.(x(a)) =g (a)
i],...,ik‘l,...,n (A.IO)

where the notations and assumptions are as in Lemma
Al

Lemma A.2: There exists a v(x) satisfying (A.lO) if and
only if, fora€T,
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&, ..., (a) is symmerriciniy, ... ,if,

181,....}‘; i,,...,i,‘al....,n

£ () =gt E@

ag""l.'l *ivg i ax'}
—a;-_(a) = i.z.:lgf“ —i(a) —a:(a)

iGedeq = oo, n (A1)

Furthermore, if these conditions are satisfied, one solu-
tion is given by

V@) =8°(@) + g @) - x(z )]
+ 25 T @ @), %, @ @), %G @)

iymlig=l

+ e

s kT DI - n @] (AL)
‘= (=]

1 Q=1

6. References

(1] W.T. Baumann, WJ. Rugh, “Feedback Control of
Nounlinear Systems by Extended Linearization,”
[EEE Transacrions on Automatic Control, Vol. AC-
31, No. 1, pp. 40-46, 1986.

{2] W.J. Rugh, “The Extended-Linearization Approach
for Nonlinear Systems Problems,” Algebraic and
Geomerric Methods in Nonlinear Control Theory, M.
Fliess, M. Hazewinkel, eds., D. Reidel, Dordrecht,
Holland, pp. 285-309, 1986.

(3] C. Reboulet, P. Mouyon, C. Champetier, “About
the Local Linearization of Nonlinear Systems,”
Algebraic and Geometric Methods in Nonlinear Con-
trol Theory, M. Fliess, M. Hazewinkel, eds.. D.
Reidel, Dordrecht, Holland, 1986,

(4] «M. Kelemen, “A Stability Property,” JEEE Transac-
tions on Automanc Conmrol, Vol. AC-31, No. 8, pp.
766-768, 1986.

[5S] J. Wang, WJ. Rugh, “Parameterized Linear Sys-
tems and Linearization Families for Nonlinear Sys-
tems,” JEEE Transactions on Circuits & Systems, to
appear, 1987.

{6] J.Wang, W.J. Rugh, “Feedback Linearization Fami-
lies “for Nonlinear Systems with Applications to
Input-Output  Decoupling,” Technical  Report
JHU/ECE 86-17.1, Department of Electrical &
Computer Engineering, The Johns Hopkins Univer-
sity, Baltimore, Maryland, 1986..

{71 W.T. Baumann, “Feedback Control of Multi-Input

Nonlinear Systems by Extended Linearization.”
Proceedings of the 20" Annual Conference on Infor-
mafion Sciences and Systems, Princeton University,
Princeton, New Jersev, pp. 657-660, 1986.

Research sponsored by the Aur Force Office of Saentfic Research, Air
Force Systems Command. USAF. under Grant Numbers AFOSR-33-0079

and AFOSR-87-0101.

i Accession For

| NTIS GRA&I

DTIC TAB

Unanncunced O
Justification_____ |
By
_Distribution/
]
__Avaiinbility Codes

T avall andjor ]
IDist Special

"pha @e el 3V 4¥s %o 870 37e FTa BT NTA U A AV RV AT R e BR Rh




$WHNNMY.WTMLW%V‘$BMXM?Q§&&{
N +
. Ly
\ X
[ J
an
e
3

A




